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Abstract Biomaterials have become an integral part of our lives as a result of the current focus on renewable



sustainability. In the realm of composites, a diverse variety of polymers coupled with multiple natural
fibres enables the achievement of varied functional property criteria. Bio- composite materials have
several benefits, in addition to the use of renewables, including minimal impact on the environment,
light weight and biodegradability. Here we have isolated nano-silica from rice husk and fabricated
woven flax fabric coated with nano-silica and phenol formaldehyde composite with varying weight
percentages of nano-silica. The extracted nano-silica was confirmed from XRD, TGA and FESEM. Five
types of composites (PF-F, 1 NS, 2 NS, 3 NS, 4 NS) prepared keeping constant weight of PF resin and
flax fabric. Mechanical, morphological and electrical behaviour of the prepared composites were
examined. From the obtained results, tensile strength was found to be maximum for 1 NS loading. In
particular, as compared to neat composites (PF-F), the tensile strength of prepared specimens with nano-
silica (1 NS, 2 NS, 3 NS, 4 NS) improved by 93.92%, 99.55%, 49.85% and 26.43% respectively. The
FESEM pictures of fracture surfaces demonstrated that the inclusion of nano-silica boosted fibre’s
interfacial strength, strengthened both fibre and matrix, and improved resin adhesion to fibre, therefore
enhancing the composite tensile characteristics. Due to polarisation processes mediated by nano-silica
inclusion, the dielectric constant in PF hybrid composites increases as the loading of nano-silica
increases. Electronic polarisation causes an increase in AC conductivity at high frequencies (3 NS). The
graph shows that as the amount of nano-silica loaded rises, the AC conductivity increases. The dielectric
constant values in 2 NS are the highest.
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Keywords (separated by '-') Nano-silica - Phenol–formaldehyde resin - Flax fabric - Hybrid composite - Mechanical - Fracture
morphology - Electrical properties
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Abstract
Biomaterials have become an integral part of our lives as a result of the current focus on renewable sustainability. In the 
realm of composites, a diverse variety of polymers coupled with multiple natural fibres enables the achievement of varied 
functional property criteria. Bio- composite materials have several benefits, in addition to the use of renewables, including 
minimal impact on the environment, light weight and biodegradability. Here we have isolated nano-silica from rice husk and 
fabricated woven flax fabric coated with nano-silica and phenol formaldehyde composite with varying weight percentages 
of nano-silica. The extracted nano-silica was confirmed from XRD, TGA and FESEM. Five types of composites (PF-F, 
1 NS, 2 NS, 3 NS, 4 NS) prepared keeping constant weight of PF resin and flax fabric. Mechanical, morphological and 
electrical behaviour of the prepared composites were examined. From the obtained results, tensile strength was found to be 
maximum for 1 NS loading. In particular, as compared to neat composites (PF-F), the tensile strength of prepared specimens 
with nano-silica (1 NS, 2 NS, 3 NS, 4 NS) improved by 93.92%, 99.55%, 49.85% and 26.43% respectively. The FESEM 
pictures of fracture surfaces demonstrated that the inclusion of nano-silica boosted fibre’s interfacial strength, strengthened 
both fibre and matrix, and improved resin adhesion to fibre, therefore enhancing the composite tensile characteristics. Due 
to polarisation processes mediated by nano-silica inclusion, the dielectric constant in PF hybrid composites increases as 
the loading of nano-silica increases. Electronic polarisation causes an increase in AC conductivity at high frequencies (3 
NS). The graph shows that as the amount of nano-silica loaded rises, the AC conductivity increases. The dielectric constant 
values in 2 NS are the highest.

Keywords  Nano-silica · Phenol–formaldehyde resin · Flax fabric · Hybrid composite · Mechanical · Fracture morphology · 
Electrical properties

1  Introduction

Polymers have a numerous benefit which allows polymeric 
materials and composite materials, to make friction parts 
like bearings, wheels, piston rings, and soft seals. These 
are easy to fabricate, ultra-lightweight and resistant to 
chemical and environmental effects. Fabric reinforced 
polymer composites, as compared to other polymer com-
posites, provide increased mechanical properties in both 
the horizontal and vertical directions of the fabric, as well 
as the ability to adhere to curve surfaces without tangling 
[1, 2] Fabric reinforced polymer composites, as a result 
of their large use in the fields of aircraft, aviation, high-
speed railways, automotive, and other fields, have recently 
sparked a broad range of financial and research interest. 
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The polymer used is the commanding factor which plays 
the key role in determining the properties of the hybrid 
composite. If fire, smoke, and toxicity (FST) conditions 
must be taken into consideration, phenolic resin have 
a considerable market share compared to epoxy resin. 
They're also employed as ablative composites for ther-
mal protection in aerospace applications like solid rocket 
motor nozzles and heat shields for space vehicle atmos-
pheric re-entry. There are several prepreg conditions that 
may be discovered here. Because of the phenolic resin's 
chemistry, phenolics have a substantially longer storage 
life than most epoxy prepregs. This is due to the nature of 
the phenolic resin's chemistry [3, 4].

Natural fibres have recently received much attention as a 
replacement for synthetic fibres in FRP (fibre reinforced pol-
ymer) composites, attributed to high environmental issues 
and a high demand for eco-friendly materials [5]. Flax is 
one of the natural fibres that has desirable material proper-
ties and could be used to replace glass fibres in fibre rein-
forced polymer (FRP) composites. Flax fibre provides the 
best possible combination of low cost, light weight, and high 
tensile strength for structural applications [6–8]. According 
to Yan et al. [9] flax, hemp, and jute are the three most excel-
lent materials for substituting glass fibres in terms of cost, 
mechanical efficiency, and production yielding. Flax fabric/
epoxy composite has a tensile strength of 300 MPa, which is 
comparable to GFRP composite, according to Assarar et al. 
[10] automotive engineering is currently a wide demand 
market for natural FRP composites. The advantage associ-
ated with natural FRP composites are it reduce the energy 
required for production by 80% and minimises component 
mass [11]. Natural FRP composites have strength and dura-
bility, therefore it can be used as crashworthy structures for 
the manufacture of vehicles.

From the perspective of energy absorption, Yan et al. 
[12] recently investigated the crash safety of flax fabric 
reinforced epoxy composites. Flax fabric/epoxy compos-
ite were discovered to have the capability to be applied as 
energy absorber devices. Comparing with traditional metal-
lic or G/CFRP composite tubes flax fabric/ epoxy composite 
tubes with foam-filler absorbed more energy during axial 
and lateral crushing [13, 14]. After comparing the energy 
absorption capacities of composites reinforced by unwoven 
hemp, woven flax, and jute, Meredith et al. [15] suggested 
flax/epoxy composites to be used as energy absorbers for 
vehicle construction. The most important application of 
natural FRP composites is probably as construction mate-
rials. These renewable products would help to lower the 
costs and improve energy consumption, addressing urgent 
infrastructure needs while also encouraging sustainability. 
Natural fibres/fabric composites may be used in construction 
as a hybrid framework in combination with traditional con-
struction materials, such as a flax fibre reinforced polymer 

(FFRP) tube encapsulated coir fibre reinforced concrete 
(CFRC) structure (FFRP-CFRC) [16].

Natural fibres, known as cellulosic biomass, such as 
banana, curauá, coconut, flax, hemp, jute, pineapple, ramie, 
sisal, and sugar cane bagasse, are often used as filler in com-
posite material since they provide numerous advantages 
over synthetic fibres, including: relatively low mass; easy 
handling; protection thermal, electric, and acoustic; archi-
tectural features; non-toxic; and low specific mass [17–19]. 
Within the automotive sector, it is thought to have a bright 
future being used in the interior coating of vehicles, buses, 
and trucks; in construction works to reinforce cement; as a 
woven fabric; in aerospace, sport, and packaging, indicating 
a booming market [20, 21]. For applications in engineering 
sector the durability issues should be rectified primarily. In 
practical use, these bio-composites would be subjected to 
a variety of extreme conditions, including atmospheric and 
weather conditions, resulting in composite material deteriora-
tion and improving safety issues. As a result, learning about 
the stability of flax FRP composites may be useful for apply-
ing in practical uses [22]. But nevertheless, technological 
problems prevent widespread use of these composites [23].

The most significant are fibre cultivation inconsistencies, 
composite manufacturing inconsistencies, and a lack of clear 
information of their behaviour. Due to a variety of factors 
such as temperature, water, radiation, fungus/bacteria, and 
mechanical stress using such products in the indoor and out-
door applications causes particular ageing issues leading to 
total deterioration. Joseph et al. [24] studied the mechani-
cal properties of sisal fibre-polymer composites subjected 
to water sorption and UV degradation to investigate the 
performance of natural FRP composites. Many researchers 
investigated the properties of natural fibre reinforced poly-
mer composites [25–27].

An increasing tendency in the fabrication of hybrid 
nanocomposites, which has sparked widespread interest 
and awareness nowadays. Nano clay layers, nanotubes, 
nano-silica and spherical particles (metal nanoparticles) are 
examples of inorganic materials used in nanocomposites. 
The uniqueness of nanomaterials are they have the potential 
to change the polymer's properties by altering the mobil-
ity of the polymer chains. One of the promising nanoma-
terial is inorganic silica nanoparticles which can enhance 
the thermo-mechanical properties of a polymer [28, 29]. 
The peculiar properties of nano-silica are due to the surface 
chemistry characterised by the presence of silanol groups in 
silica nanoparticles.

Dinesh et al. [30] investigated mechanical, thermal and 
morphological behaviour of nano-silica treated pineapple 
woven fabric in epoxy resin. From the mechanical tests they 
found that 1 vol% nano-silica and 30 vol% pineapple fibre gave 
maximum properties. The thermal degradation was slowed 
down by the addition of 1 vol% nano-silica. Same was the trend 
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for tribological behaviour. The fracture toughness was also 
improved by the nano-silica addition which was confirmed from 
the SEM images. Despite the fact that silica has many applica-
tions in polymers, the agglomeration and low compatibility of 
SiO2 in the rubber matrix leads to its restricted applications. The 
surface treatment of sisal fibres improved the interface adhesion 
between fibres and resin by adding nano-silica to the phenol 
formaldehyde resin [31]. Under various temperatures, the borax-
treated fibres demonstrated the highest heat resistance, constant 
friction coefficient, and low wear rate. The best fibre content was 
15 wt.%. The impact of nano-silica and nano-clay on glass fibre 
reinforced composite have been studied [32]. It is for this reason 
that adding nano-silica and/or nano-clay to GFRP composites 
may help them perform better in corrosive conditions.

As a result of their higher biocompatibility, reusability, and 
degradability compared to synthetic fibres, natural fibres (such 
as coconut fibres, silk, flax fibres, and flax seed fibres) and 
synthetic fibres (such as glass fibres) are often used to reinforce 
polymer or hybrid or natural resin matrix composites [33]. 
Epoxy resin is blended with Lannea coromandelica (LC, Anac-
ardiaceae plant gum) to create hybrid Lannea Coromandelica 
Blender Epoxy matrix composites (LCE) that are biodegrad-
able and environmentally friendly. Hybrid Composites (Pine-
apple/Silk/Flax fibre mats with 2%, 4%, and 6% volume frac-
tion of Bentonite nanoclay in each composition reinforcement 
in hybrid LCE resins prepared by compression hand moulding 
process) and hybrid LCE resin are made using this approach. 
Hybrid composites' mechanical properties have improved by 
three to four times when compared to hybrid LCE resin. DMA 
findings show that untreated and treated hybrid composites 
have the highest storage modulus and lowest damping factor 
compared to hybrid LCE resin. LCE resin composites rein-
forced by P/G/P fibre mats can be biodegraded at a 4% volume 
fraction of nano filler, according to biodegradability studies. 
In light of the increasing environmental, economic, and appli-
cation issues, hybrid composites are expected to garner sub-
stantial attention in the future [34, 35]. As an alternative to 
synthetic fibres, researchers developed novel composites that 
included more than one reinforcement from natural resources, 
such as natural fiber/natural fibre or natural fiber/nanofiller 
from organic sources [36]. It is important to use natural fibres 
and fillers instead of synthetic ones in order to reduce the envi-
ronmental impact of our products. There has been a rise in the 
use of natural filler/fibers as a reinforcing mediator because of 
the abundance of these materials [37].

So far, there have been very few studies on the property 
studies (mechanical, morphology and electrical properties) 
of flax fabric polymer composites. According to a survey of 
the literature, no particular research has been done to evaluate 
the influence of a PF matrix containing nano-silica (extracted 
from rice husk) on the mechanical, morphological and electri-
cal behaviour of Flax fabric/PF hybrid composites at the same 
time. Natural fibres and natural fillers that are environmentally 

friendly are becoming more popular, and they should be used 
instead of synthetic fibres and fillers to meet the growing 
demand for green products. Because natural filler/fibers are 
readily available, the use of natural filler/fiber as a reinforcing 
mediator has evolved in the application of science and tech-
nology. The combined effect of nano-silica on the mechanical, 
morphological behaviour and electrical properties of flax fabric-
phenol formaldehyde hybrid composites are examined in this 
study. The prepared hybrid composites have the potential for 
large-scale applications because to their commercial availabil-
ity, inexpensive raw material, and simple production procedure. 
The method we have developed is an easy, low-cost, and eco-
logically friendly method. This paper describes the fabrication 
of an environmentally friendly PF-flax fabric hybrid compos-
ites using compression moulding. Nano-silica extracted from 
rice husk were utilised to increase the hydrophobicity of the 
materials and to improve their dimensional stability. When the 
nano-silica is added, the properties of the products were greatly 
enhanced. This research was able to increase the mechanical, 
and electrical properties of the PF hybrid composite, and it has 
implications for the industrial manufacturing as well as applica-
tions in high-humid environments.

2 � Materials and Methods

2.1 � Materials

Rice husk was obtained from local sources (rice mill, 
Kalady, Kerala, India). Rice husk contains impurities such 
as alkali metals, and organic constituents. Sodium Hydrox-
ide, Hydrochloric acid, Ethanol of analytical grades (AR) 
were purchased from Merk, India. Plain woven flax fabric 
was obtained from W.F.B. Baird & Company, Kochi, Ker-
ala, India (Table 1). Phenol formaldehyde resin (PF) was 
purchased from Polyformalin, Ernakulam, Kerala, India. 
The pH of PF is 9–10, specific gravity at 30 °C is 1.252 
and total solid content is 49.68% w/w.

2.2 � Extraction of Nano‑silica from Rice Husk

The raw material rice husk was obtained from rice mill at 
Kalady, Ernakulam, Kerala. All reagents used were of ana-
lytical grade, and their solutions were made up in distilled 

Table 1   Basic parameters of 
flax fabrics

Parameters Flax fabric

Woven style Plain
Density (gm/cc) 1.3
Thickness (mm) 0.45
Weight (gsm) 140
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deionized water. The rice husk was thoroughly cleansed so 
as to eradicate sandy and dust particles. The extraction pro-
cess was adopted from published literature, with a few minor 
alterations, to meet our needs [38, 39]. Later it was subjected 
to heat treatment to obtain the ash. Samples were burned 
inside a programmable muffle furnace at 700 °C for 2 h. Fol-
lowed by the addition of 1.5 M sodium hydroxide solution. 
Then the filtrate was treated with conc. HCl to form the silica 
sol. The suspension was filtered and washed several times and 
kept in oven for 24 h at 70 ℃. The dried powder was calcined 
at 700 °C for 2 h and used for further studies.

2.3 � Preparation of Nano‑silica Coated Flax Fabric/
Phenol–Formaldehyde Composites

PF-flax fabric hybrid composites were fabricated by the com-
pression moulding technique. The weight of nano-silica for the 
preparation of PF hybrid composites was taken based on the 
total weight of PF and flax fabric (Table 2.). Ethanol is used 
as a dispersing agent for nanomaterials. To obtain a uniform 
dispersion, the solution was homogenised for half an hour. Flax 
fabric was cut into a square piece (15*15 cm). The nanomate-
rial dispersion was sprayed on the fabric and kept in the oven 
at 70 ℃ for the removal of ethanol. On the dried fabric, previ-
ously weighed PF resin was poured and spread using a roller. 
After that, the sample is pressed in a pre-heated compression 
moulding machine at 100 ℃ for 30 min. The sheets of hybrid 
composites were produced and cut into the desired size after 
cooling, and were used for further research.

2.4 � Characterisation of Nano‑silica Coated Flax 
Fabric/Phenol–Formaldehyde Composites

2.4.1 � X‑ray Diffraction Analysis (XRD)

The crystallinity of the nano-silica and PF hybrid compos-
ites were recorded on Bruker AXS D8 Advance with Cu 
Kα radiation with an angle range 5°-80° (2θ angle range) 
at a wavelength of 1.541 Å and an operating voltage of 
45 kV and a current of 35 mA.

2.4.2 � Field Emission Scanning Electron Microscopy (FESEM)

The morphology of nano-silica and fracture surface of PF 
hybrid composites were analysed using Hitachi SU6600 
Variable Pressure Field Emission Scanning Electron 
Microscope (FESEM) at acceleration voltage of 30 kV 
and Probe current of 1pA ~ 200nA. All the samples were 
sputter-coated with gold to avoid charging.

2.4.3 � Thermogravimetric Analysis

The thermal properties of the samples were analysed using 
Perkin Elmer Diamond TG/DSC. In a nitrogen atmos-
phere, 10 mg of the sample was placed on the alumina 
cup and heated at a rate of 20 ℃ /min. The temperature 
range of measurement is from 25 ℃ to 700 ℃.

2.4.4 � Atomic Force Microscopy (AFM)

The surface morphology of pristine nano materials and 
composites were characterised with Atomic Force Micros-
copy (WITec GmbH, Ulm, Germany) in contact mode at 
room temperature. The suspension of CNT and CNT-
COOH was sonicated well and then analysed.

2.4.5 � Mechanical Characterisation

The mechanical properties of the samples were tested 
using Universal Testing Machine (Tinius Olsen) accord-
ing to ASTMD 638. The samples were cut into rectangular 
strips and the testing were conducted at room temperature 
with a gauge length of 60 mm and speed rate 2 mm/min.

2.4.6 � Electrical Conductivity

The dielectric properties of the samples were measured 
using Wayne Kerr 600B precision LCR meter with fre-
quency ranging from 20 Hz to 30 MHz.

3 � Results and Discussion

3.1 � X‑ray Diffraction (XRD) of Nano‑silica

The XRD pattern of nano-silica isolated from rice husk 
(Fig. 1) showed a wide-angle at 2θ = 22°, confirming nano-
silica formation from rice husk. This unique broad peak at 
2θ = 22° indicated the presence of silica in the amorphous 
form [40–42]. The obtained broad diffraction peak clearly 

Table 2   Designation and formulation details of prepared PF-F hybrid 
composites

Sample 
code

PF resin (g) Flax fabric 
(g)

Nanofiller 
loading 
(g)

Weight 
percentage of 
composites

PF-F 10 10 0.0 0.00
1 NS 10 10 0.1 0.02
2 NS 10 10 0.2 0.04
3 NS 10 10 0.3 0.06
4 NS 10 10 0.4 0.08
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shows the existence amorphous nano-silica. If the peak was 
sharp then the silica obtained should be crystalline. The pure 
nano-silica, on the other hand, was sintered at 1373 K to 
reach the crystalline phase and quantify the crystallite size.

By treating with sodium hydroxide, sodium silicate is 
formed. When concentrated HCl is added pure nano-silica 
is formed.

The presence of only one peak confirms the removal 
organic constituents and alkali metals associated with silica 
[43]. Chidambaram et al. [44] obtained similar diffraction 
peaks for nano-silica derived from groundnut shell, coconut 

SiO
2(ASH) + 2NaOH → Na

2
SiO

3
+ H

2
O

Na
2
SiO

3
+ 2HCl → SiO

2
+ 2NaCl + H

2
O

husk, banana peel, walnut shell and orange peel. Previous 
findings demonstrated by other researchers, in which bio-
genic nano-silica was produced using rice husk as a precur-
sor [45, 46]. The XRD peak of the produced biogenic silica 
revealed that it was amorphous in form, which is closely 
related to the current study.

3.2 � Field Emission Scanning Electron Microscopy 
(FESEM): Nano‑silica

From the FESEM analysis (Fig. 2) it was observed that 
rice husk-derived nano-silica exhibited agglomerations. 
The hydrogen bonding between silanol groups on the 
surface of nano-silica was determined to be the cause of 
aggregation. The particles were found to be spherical and 
aggregation of silica-silica was found to be minimal. This 
result is in agreement with other literature reports [47]. Jen 
et al. [48] have isolated silica nanoparticles from palm ker-
nel shell ash and analysed the morphology. SEM images 
showed porous nature of silica nanoparticles similar to 
our result. These bio-derived nanoclusters can be used as 
carriers in biomedical and nutraceutical applications [44].

3.3 � Thermogravimetric Analysis (TGA): Nano‑silica

Here we can see that weight loss was little with an increase 
in temperature (Fig. 3). Initial weight loss was due to the 
removal of residual moisture [42, 49, 50]. The very slow 
weight loss can be attributed to the porous nature of nano-
silica. As a result, nano-silica required more time to heat 
up before water molecules could be released from the 
nano-silica.
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Fig. 1   XRD curve of nano-silica from rice husk

Fig. 2   FESEM image of nano-
silica obtained from rice husk
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3.4 � X‑ray Diffractogram (XRD) Analysis

The XRD data is used to determine the structural properties 
of PF hybrid composites with nano-silica. The XRD of PF 
hybrid composites with different loadings of nano-silica is 
shown in Fig. 4. The major peaks are observed at 18° and 22°. 
Pure PF does not show any strong peaks. The peak of nano-
silica is at 22°. All PF hybrid composites have identical XRD 
patterns. The XRD results further show that the interfacial 
interaction of nano-silica with the PF-F matrix caused dis-
tinctive variations in crystallinity. The interfacial interaction 
of nano-silica with the PF-F matrix produced a characteristic 
improvement in the crystallinity of the hybrid composites.

3.5 � Atomic Force Microscopy (AFM)

The surface topographies of PF-F and 2 NS is shown in 
Figs. 4 and 5. Atomic force microscopy is used to look at 

the surface roughness of composites that have been made. 
Figure 5A-C shows the AFM images of PF-F composites. 
This shows slightly rough surface. Figure 6A-C shows the 
AFM images of 2 NS composites. This loading was selected 
because it provides superior features in terms of sorption 
properties, hydrophobicity, thermal stability, and other char-
acteristics. According to the enhanced properties of PF-F 
hybrid composites, as demonstrated in the experiment, the 
figure shows that the nano-silica were spherical, with minor 
agglomerations. One of the most important factors contribut-
ing to the better performance of produced composites is the 
fine dispersion of nanomaterials in the matrix. It has been 
demonstrated that the roughness of the hybrid composites 
prepared decreases as a result of the addition of nano-silica 
from 8.58 nm (PF-F) to 7.31 nm (2 NS). It is possible that 
the enhanced roughness of the surface of PF-F’s is responsi-
ble for the lower contact angle and better wettability. Hence 
decreased roughness will lead to less wettability [51].

3.6 � Mechanical Properties of PF‑F Hybrid 
Composites Reinforced With Nano‑silica

The stress–strain behaviour of woven flax fabric–PF com-
posites and nano-silica coated composites is shown in 
Table 3. From the stress–strain curve, it is observed that the 
stress increases steadily with strain until all specimens break. 
It is obvious from the table that, in the case of brittle mate-
rial, the stress–strain curve approaches linearity almost all 
the way to failure. At low strains, the stress–strain curves of 
the composites exhibit linear behaviour; nevertheless, when 
the composites fail completely, a considerable shift in slope 
is detected, indicating that the composites are exhibiting 
nonlinear behaviour. The stress–strain behaviour becomes 
more pronounced with the addition of nano-silica (2 NS). 
Due to the excellent load transmission between the nano-
silica and the PF matrix and flax fabric, the composite 2 
NS exhibits the highest tensile stress value. With the addi-
tion of nano-silica, the stiffness of the PF hybrid compos-
ites improved. The composites became more brittle by the 
addition of nano-silica, and before the composite ruptured, 
the elasticity of the matrix had been significantly enhanced. 
Here, the maximum energy needed for rupturing is 3 NS > 4 
NS > 1 NS > 2 NS > PF-F.

The tensile strength of the PF hybrid composite was the 
least, while nano-silica inclusion increased the compos-
ite mechanical properties. Because 2 NS has good tensile 
strength, it will experience less deformation and degrada-
tion during testing and can withstand higher stress, which 
will improve its tensile strength. It should be emphasised 
that all samples showed brittle failure characteristics. 
The nano-silica content plays a crucial role in improving 
mechanical properties. The addition of fibres, reinforce-
ments, and additives in the matrix is known to improve 
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Fig. 5   A-C AFM image of PF-F 
composite B 3D image of PF-F 
composite
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composite mechanical properties. By increasing nano-
silica concentration, the tensile strength of composites 
improves. The tensile strength of the flax/PF composite 
is initially 31.59 MPa, but the addition of 1 NS raises the 
tensile strength to 61.26 MPa. That is, it shows an increase 
of 93.92%. The tensile strength is at its maximum observed 
for 2 NS, which is 99.55% higher than the PF-F compos-
ite. The tensile strength of 3 NS and 4 NS is 47.34 MPa 
(49.85%) and 39.94 MPa (26.43%), respectively.

The even distribution of nano silica enhances the 
weight carrying capabilities of composites. The nano-
silica in nano-silica-coated flax/PF composites works as 
a deformation barrier, increasing composite strength. The 
tensile strength of composites is increased as a result of 
the formation of a strong interface between PF, nano-sil-
ica, and flax fabric [52–54]. At higher loading, the reduc-
tion in tensile strength was observed due to agglomera-
tion, resulting in ineffective stress transfer. A tremendous 
improvement in tensile strength was observed due to the 
nano silica addition since an effective stress transfer is 
possible from nano-silica coated flax fabric to the PF 
matrix. The primary elements of flax fibre are cellu-
lose, hemicellulose, wax, lignin, and pectin, in different 
ratios. The mechanical properties of the composite are 
determined by the cellulose, the toughest and strongest 
chemical ingredient in the fibre [9]. In all natural fibres, 
the cellulose is wrapped in non-cellulosic ingredients. 
The inclusion of silica nanoparticles into the structure of 
the fibre improves the fibre's load bearing capability of 
PF-Flax fabric composites. At higher loadings of 3 NS 
and 4 NS, the tensile strength decreased gradually due to 
the ineffective load transfer. At higher loading there is a 
chance of agglomeration, which results in the formation 
of localised stress points. This results in a lowering of 
mechanical properties.

The higher amount of nano-silica in the composite 
could operate as a stress concentration zone, resulting in 
localised cracks that inhibit the composite from improv-
ing its properties. A better particle dispersion order effi-
ciently restrains the load flow [55]. The aggregation of 
particles causes poor dispersion quality at higher loading 

of nano-silica. The tensile strength reduces as a result 
[56–59]. Because of the improved fibre-matrix interac-
tion caused by good adhesion, the tensile strength and 
modulus of a fibrous composite system were boosted. 
The reduction in free volume contributes to the improved 
tensile characteristics of prepared composites. The nano-
silica loading improved the elastic nature PF-flax fabric 
composites.

The elastic behaviour of the composites is determined 
from the percentage of elongation. The highest elongation 
at break was observed for 3 NS and at higher loading of 
nano-silica (4 NS) the elongation at break slightly decreased 
than 3NS. The 1 NS and 2 NS composite have toughening 
behaviour compared to other loadings which is evident from 
less elongation at break. The addition of nano-silica at lower 
loading improves the stiffness of the entire composite thereby 
reducing less plastic deformation. From the results we can 
conclude nano-silica addition improved mechanical prop-
erties. The tendency for elongation at break (%) to decline 
and eventually break at higher filler loading, matrix defor-
mation is not only influenced by the nature of the interface 
but also by the dispersion of the fillers. Due to the addition 
of mechanical constraints by the nearly indeformable nano-
silica particles, the modest fall in ductility implies a reduction 
in matrix deformation. Nano-silica act as stress concentrators 
due to various elastic characteristics of the material's con-
stituent parts. Particle agglomeration encourages increased 
cavitation, higher stress concentration, and faster breaking 
[60]. Many researchers got similar trend with the addition 
of nano-silica in other polymer matrices [61, 62]. Feli et al. 
[63] got improvement in mechanical properties with nano-
silica loading in epoxy composites. Zhou et al. [64] found 
enhancement in elongation with the addition of 2 wt.% nano-
silica in epoxy-carbon fibre composites. In corelation with 
stress–strain curve the toughness was calculated and found 
that nano-silica addition improved the same. The mechanism 
of interaction is schematically shown in Fig. 7.

3.7 � Fracture Mechanism by Morphology Analysis 
(FESEM)

The fracture surface morphology of PF-flax fabric compos-
ites and nano-silica coated flax fabric/PF composites were 
evaluated under a scanning electron microscope (Fig. 8). 
When a polymer is used, it transmits the load to the fabric 
and functions as structural support for the entire composite. 
As a result of the loading, the composite is pulled and the 
composite’s elongation occurs. Elongation causes cracks to 
appear in the material, and the brittleness of the PF will tend 
to spread the locally formed crack while the material is being 
stretched. As a result, a piece of the polymer surrounding the 
fibres is removed throughout the procedure. This is respon-
sible for the debonding of the fibres. As the fibre de-bonds, 

Table 3   Mechanical properties of PF-F hybrid composites with nano-
silica

Sample code Tensile strength 
(MPa)

Young’s modu-
lus (MPa)

Elongation 
at break (%)

PF-F 31 ± 1 1010 ± 2 8 ± 1
1 NS 61 ± 2 1095 ± 7 11 ± 1
2 NS 63 ± 2 1217 ± 4 10 ± 1
3 NS 47 ± 1 1051 ± 4 22 ± 1
4 NS 39 ± 1 1025 ± 6 20 ± 1
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it progressively loses its capacity to bear weight, and, as a 
result, the material's strength diminishes with time.

Figure 8a.1 & a.2 shows fibre pulling out from the fab-
ric and debonding from the PF-F matrix. The presence of 
nano-silica can limit the growth of microcracks caused by 
stress concentration by having good interaction and a strong 
bond with the PF matrix and flax fabric (Fig. 8b.1 & b.2). 
Therefore, the toughness of hybrid composites is improved. 
It's critical to have effective stress transmission between the 
PF, flax fabric, and nano-silica in order to obtain maximum 
mechanical properties. The existence of interfacial interac-
tion enhances the passage of stress within the composite 
[65]. Composites reinforced with nano-silica reinforcement, 
on the other hand, show evidence of better fabric-matrix 
bonding [66]. On closer inspection, it can be observed that 
the nano-silica reinforcement ensures better load-bearing 
efficiency. There are no apparent fibre pull-outs, indicating 
that the de-bonding of fibres has been greatly decreased. As 
a result, increasing the load-bearing capability of nano-silica 
can be advantageous.

3.8 � Electrical Properties of PF‑F Hybrid Composites 
Reinforced With Nano‑silica

The polarizability of a substance has an effect on the dielectric 
constant of that material. The dielectric constant of a polymeric 
material is affected by polarisation at the interface, at the dipole, 
at the electronic level, and at the atomic level [67]. Due to the 
presence of polar groups in PF resin, it has a dielectric constant. 
The interfacial polarisation is also present in hybrid compos-
ites since they are heterogeneous. Because the molecule may 
be fully oriented at low frequencies, the dielectric constant has 
a frequency dependency. Medium-frequency transmissions 
provide little time for orienting. At extremely high frequencies, 
molecular orientation is impossible. Here we can see that due to 
the presence of nano-silica, the dielectric properties have been 
improved. This is because of the polar groups (nano-silica) pre-
sent in the hybrid composite. 2 NS has highest AC conductiv-
ity [Fig. 9a, dielectric conductivity Fig. 9b and dielectric loss 
Fig. 9c]. This was most likely due to a higher population of 
nano-silica in the backbone, as well as phase separation. The 

Fig. 7   Plausible mechanism of interactions present in PF-F hybrid composite
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total dielectric constant of the PF hybrid composite was greater 
than the PF-F composite because nano-silica has a higher dielec-
tric constant than pristine composite [68]. It is apparent that 
when the frequency of application is increased, the ac conduc-
tivity rises. This might be attributed to an increase in absorbed 
energy, which in turn leads to an increase in the number of 
charge carriers involved in the conduction process. These find-
ings corroborate previous findings for various polymer com-
posites [69–71].

Interfacial, orientation, atomic, and electronic polariza-
tions all have a role in determining a composite's dielec-
tric constant (E). The matrix and filler conductivities, or 
polarizations, vary, resulting in interfacial polarisation in 
composites [72]. When polymers with polar groups are put 
in an electric field, orientation polarisation occurs. Filler 
concentration affects both the composite's orientation and 
interfacial polarisation. At low frequency, nano-silica load-
ing improved the dielectric constant as seen in Fig. 9b. Natu-
ral fibres include polar groups of cellulose, which contrib-
ute to an increase in orientation and interfacial polarisation 
with increasing fibre loading. The E exhibits greater values 
at lower frequencies for a given fibre loading. Orientation 
polarisation diminishes as frequency increases, and this may 
be attributed to this phenomenon. Orientation polarisation 
takes longer to attain equilibrium than electronic and atomic 
polarisation, and lower frequencies are required for full 
orientation of the molecules. Due to the lag in orientation 
polarisation, as frequency rises, the E decreases.

4 � Conclusions

Phenolic-based hybrid composites were prepared with flax 
fabric and nanofillers. With the addition of nanofillers sig-
nificant improvements were found. The following conclu-
sions may be drawn from the data:

•	 Nano-silica was successfully isolated from rice husk. 
The diffraction peak shows 2θ = 22° which is specific 
for nano-silica. Higher thermal stability was observed 
from TGA. From the FESEM images it shows clusters 
of nano-silica particles.

•	 The XRD data revealed that the incorporation of nano-silica 
into the PF-flax composite provided efficient reinforcement.

•	 The XRD data revealed that the incorporation of nano-silica 
into the PF-flax composite provided efficient reinforcement. 
From the mechanical properties, the addition of nano-silica 
improved the tensile strength, modulus, toughness, and ulti-
mate stress. The improved mechanical characteristics of 
composites containing 2 NS were attributed to the uniform 
dispersion of nano-silica in the PF-flax fabric composites. 
In the presence of 2 NS, an increase in tensile strength of 
approximately 61% has been recorded. From the fracture sur-
face morphology, it is clear that the absence of visible fibre 
pull-outs and the debonding of fibres has been significantly 
reduced by the addition of nano-silica (2 NS).

•	 The dielectric constant in PF hybrid composites grows as the 
loading of nano-silica increases due to polarisation processes 

Fig. 8   FESEM images of a.1 
& a.2 PF-F and (lower and 
higher magnification) b.1 & b.2 
nano-silica coated PF-F hybrid 
composites (2 NS) (lower and 
higher magnification)
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mediated by nano-silica inclusion. At high frequencies, elec-
tronic polarisation induces an increase in AC conductivity 
(3 NS). The graph demonstrates that the AC conductivity 
increases as the loading of nano-silica increases. The highest 
dielectric constant values are found in 2 NS.
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